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Abstract-A binary mixture theory is developed for wave guide-type propagation in laminated and undirectional
fibrous composites. In particular, a rational construction of both mixture interaction and constitutive relations is
given. The resulting theory contains microstructure.

The domain of validity ofthe mixture theory is determined by comparison of the phase velocity spectrum with
exact and/or experimental results. The utility of the model is demonstrated for both laminated and fibrous com­
posites by correlating theoretical and experimental transient pulse data on boron-carbon phenolic and Thornel­
carbon phenolic laminates, and uni-directional fibrous quartz phenolic.

1. INTRODUCTION

IN RECENT years several continuum theories have been proposed as models of the elasto­
statics or elastodynamics of composite materials.

The so-called "effective modulus" theories, such as those proposed by Postma [IJ and
White and Angona [2J replace the actual composite by a homogeneous, generally aniso­
tropic medium whose material constants are a geometrically weighted average of the
properties of the constituents. While yielding satisfactory results for certain geometries
under static loads, such an approach exhibits serious deficiences for virtually all geometries
when applied to wave propagation. Specifically, effective modulus theories are incapable
of reproducing the dispersion and attenuation observed in composites. Such behavior is a
result of the microstructure of the particular composite; consequently, any continuum
theory designed to account for it must, in some fashion, reflect the effect of microstructure.

One model satisfying this criteria is the so-called "effective stiffness" theory proposed
by Achenbach, Herrmann and Sun [3-5]. Here the actual composite is transformed into
a homogeneous higher order continuum with microstructure.

Another approach is that taken by Lempriere [6J and Bedford and Stern [7]. These
investigators propose mixture theories as models of the elastodynamics of composites.
The composite constituents are superimposed in space and allowed to undergo individual
deformations. The microstructure of the actual composite is then simulated by specifying
the interactions between the constituents. For the case ofa one-dimensional (on the average)
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wave propagating in a two-component mixture, Lempriere hypothesizes the nature of these
interactions as being dependent upon either the displacement or velocity difference in the
two constituents, For laminates running in the direction of propagation, Bedford and Stern
offer an analytical procedure to determine these interactions, based upon a quasi-static
analysis of the composite,

In this paper we present an alternate analytical procedure for the development of binary
mixture theories modeling wave propagation in laminated and uni-directional fibrous
composites. We consider the case where propagation is parallel to both laminates and
fibers. In particular, a rational construction of the mixture interaction and constitutive
relations is given. The resulting theory contains microstructure, i.e. information on the
distribution of displacements and stresses within individual constituents.

The theoretical approach is such that models of arbitrary orders of accuracy can be
determined. In this paper, however, attention is focused on the development of a first order
theory whose simplicity will, it is hoped, lead to maximum utility.

The domain of validity of the first order mixture theory is investigated by comparison
of the phase velocity spectrum with exact and/or experimental results. The utility of the
first order dispersive theory is demonstrated for both laminated and fibrous composites by
correlating theoretical and experimental transient pulse data on boron-{;arbon phenolic
and Thornel-{;arbon phenolic laminates, and uni-directional fibrous quartz phenolic.

2. ANALYSIS AND RESULTS FOR LAMINATED COMPOSITES

Formulation

Consider a periodic array of two linearly elastic, isotropic, and homogeneous laminates,
bonded at their interfaces. A state of plane strain will be assumed in the z-direction, as well
as wave motion yielding symmetric Ux and antisymmetric uy distributions with respect to
the y-coordinate within each laminate, where Ux and uydenote displacements in the x- and
y-directions, respectively. Consequently, averaged motion of laminates exists only in the
x-direction, and it is sufficient to consider a typical bi-laminate as illustrated in Fig. 1.

y

x

.. x

FIG. 1. Laminated composite geometry and coordinate system.
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The basic equations for the laminates are:
(i) Equations of motion:

(~) (~) (~)

(\O"xx+Oy.O"XY = p~otux,

(~) (~) (~)

Oy.O"yy+ox(JXY = PaotUy,

(ii) Constitutive relations:

(~) (~) (~)

(Jxx = (A+ 2ft)~oxux+ AaOy.Uy,

(a) (a) (a)
O"yy = (A+ 2ft)aOy.Uy+ Aa.<"JxUx,

(a) (~) (~)

O"xy = fta(Oy.U x+ OxUy),

where

(2.1 a)

(2.1b)

(2.2a)

(2.2b)

(2.2c)

(Jxx' O"xy' etc. are components of the stress tensor, Pa is the mass density of material, iX, t
denotes time, Ya is a local coordinate in the y-direction with origin at the midplane of the
iX-constituent, and the superscript or subscript iX( = 1, 2) refers to the (X-constituent.

In addition to equations (2.1) and (2.2), the complete specification of motion requires
(iii) Symmetry conditions:

(a)

Uy = 0,
(a)

(JXY = ° on Ya = 0, (2.3)

(iv) Interface conditions:

(1) (2)

Uy = u)/,
(1) (2)

O"yy = 0")/)/ (2.4)

on Yl = ht>Y2 = -h2·
(v) Initial conditions at t = 0, and appropriate boundary data at x = 0, L, where

x E [0, L].

Mixture equations of motion

If(2.1a) is integrated with respect to Ya from°to ha, and averaged stresses and displace­
ments are defined according to

(aa) _ 1 Jh. (a)

( ) = h () dy,
a 0

(2.5)

where ha denotes the half thickness oflaminates of material oc, then (2.1a) can be written as

(2.6)

(a)

Since (Jxy must be continuous across laminate interfaces (see 2.4) and is asymmetric in Ya'
one deduces that

(1) (2)

- (JX)/(x, hi> t) = (JX)/(x, h2 , t) == (1~,(x, t). (2.7)



398 G. A. HEGEMIER, G. A. GURTMAN and ADNAN H. NAYFEH

With the aid of (2.7), equations (2.6) can be placed in a standard binary mixture form by
introducing the following "partial" stresses and densities:

where

(ap) (aa)

(7xx == na(7xx, (2.8)

(2.9)

is a volume fraction of the (X-constituent. Utilizing (2.7) and (2.8), the momentum equations
(2.6) become

where

(Ip) (p), ~la)

°x(7xx-PI Ot Ux = P,
(2p) (p) (2a)

0x(7xx- P2 0 ;Ux = -P,

(2.10a)

(2. lOb)

(2.11 )

is an "interaction" term reflecting momentum transfer from one constituent to another via
shear interaction across laminate interfaces.

To this point the analysis essentially parallels that of Bedford and Stern [7]. We now
propose an alternate procedure for the analytical determination of the interaction term P
and the mixture constitutive relations.

Expansions and recurrence relations

The procedure commences by assuming a power-series expansion for stresses and
displacements about the midplane of each laminate. Thus we have

(a)

where g represents stress or displacement in the (X-constituent. We note that the series (2.12)
need not be convergent, but only asymptotic in a parameter e as e ---> 0, where e represents
the ratio of typical micro-to-macro-dimensions of the composite. For complete details
concerning this point, the reader is referred to [8].

Substituting (2.12) into equation (2.1) through (2.2), and equating terms of similar order
of Ya' one obtains the following differential-recurrence relation for the coefficients of the
expansion (2.12):

(a) (a) (a)

°x(7xx(n) + (7xy(n+ I) = piJtux(ro),

(a) (a) (a)

(7yy(n+I)+(lx(7xy(n) = p/J;uy(n),

(a) (a) (a)

(7xx(n) = (A + 2JL)aox u x(n) + AaUy(n+ I)'

(a) (a) (a)

(7yy(n) = (A+ 2JL)aUy(n+ 1)+ Aa(lxUx(n) ,

(a) (a) (a)

(7xy(n) = JLa( Ux(n + I) +0xUy(n»'

(2.13a)

(2.13b)

(2. 14a)

(2.14b)

(2.14c)
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Equations (2.13a), (2.14a, b) .apply for n = 0,2,4, ... , whereas (2.13b), (2.14c) are valid for
n = 1, 3, 5, .... It is noted that

(~) (~)

(Jxy(n) = uy(n) = 0 for n = 0,2,4, ... ,
(~) (~) (~)

(Jxx(n) = (Jyy(n) = ux(n) = 0 for n = 1,3,5, .... (2.14d)

Conditions (2.14d) follow from symmetry or asymmetry of appropriate stresses and
displacements.

Using the differential-recurrence relations (2.13-14), all stresses and displacements
may now be written in terms ofthe dependent variables ofthe mixture momentum equations
(2.10) as follows:

(2.15)

(~) (~)

where :t(n) and .it(n) are linear differential operators with respect to x and t.
Since the objective of the present paper is a rational development of a first order

mixture theory, it will be necessary to derive only the first term or two of the foregoing
operators. Details concerning the complete determination of all operators and resulting
higher order theories can be found in [8].

Mixture constitutive relations
(~)

If equations (2.2a) and (2.2b) are averaged according to (2.5) and continuity of uy
across laminate interfaces is invoked, the result is

where

(2a)

[
(J ..1 2 (2a)]n2 ---ft_-fJ u = S
£2 £2 x x '

(2) (1) (1)

u; == uy(x, h2 , t) = uy(xt-h t , t) = -uy(x, hi> t),

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.17a)

(2.17b)

(2.17c)
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(2.18a)

Now, let the characteristic dominant signal wavelength of wave motion be I, and the
typical composite microdimension be hI +h z . Further, consider the nondimensional
variables:

~ = x/I, (, = yj(h l +hz),

"[ = {co/I, [; = (hl+hz)/I,

where Co denotes a representative "mixture" velocity (to be defined later). Then if x E (0, I),
{ E (0, I/co)' we have ~ E (0, I). "[ E (0. I): i.e. the typical macrodimension is now O( I) whereas
the typical microdimension is 0([;).

With the aid of the recurrence relations (2.13-14), the nondimensional variables (2.18a),
and the assumption that I may be selected such that

Di ) = 0(1),

where ( ) represents

the stress continuity condition

or

(.\( ) = 0(1).

(,p)

(Jxx'

(I) (Z)

O"yy(x, hI, I) = O"yy(x, -hz, I)

can be written

(Ia) (Za)

[I+O(I:Z)J O"yy = [1 + O(I:Z)J O"yy. (2.18b)

In what follows it will be assumed that I: « 1. We shall neglect the O(I:Z
) terms here and

adopt the approximation

(Ia) (Za)

0"yy ::::::: 0"yy

whereupon (2. I 6c, d) yield

where

Substituting (2.19) into (2.16a, b) furnishes

(Ip) (lal (Za)

O"xx c:::: CllOxUx+C120xUx,

(Zp) (Ia) (Za)

(Jxx c:::: C120xUx+Czzoxux'

where

( A;) . _ A,AfJ
c" = n,E'-/f' (,fJ - E'

((X, f3 = I, 2, ; (X -=I- f3).

(2.18c)

(2.19a)

(2.19b)

(2.20a)

(2.20b)

(2.21)
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Equations (2.20) are the mixture constitutive equations, subject to the approximation
(2.l8c). A higher order theory can be generated by relaxing (2.l8c) and employing the
differential-recurrence relations (2.13) and (2.14). In such a case the coefficients c~fJ would
become differential operators in x and t. For most engineering applications, however, the
present "first order" theory should be adequate.

Interaction term P

To solve for P we multiply (2.2c) by y~ and integrate as follows:

(2.22)

(~) (~)

Upon expanding axUy-(JXy/J1~ in powers of y~ according to (2.12-2.15), and subsequently
integrating by parts, we find

(2.23a)

With use of the expansion (2.12), and the recurrence relations (2.13-2.14), the higher order
terms in (2.23a) may be grouped in the form

(~)

where 1] fJ are second order differential operators in ~ and r. As before, since £ « 1, we shall
neglect all 0(£2) terms in (2.23b). Under this approximation, and using (2.7), (2.17b), we find

Since

(I) (I) (2)

ux(x,hl,t) = Ux(x, -hl,t) = uAX,h 2 ,t).

Equations (2.24) can be solved for (J~y as follows:

(2.24)

(2.25)

(2.26a)

If £2 « 1, it is reasonable to neglect 0(£2) terms in (2.26a). Under this approximation,
the interaction term P = (J~y/(hl +h2 ) takes the form

(2.26b)
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K = 31l11l2/(llln2+1l2nd.

It is noted that (2.26b) is identical to that obtained by Bedford and Stern [7].

(2.26c)

Phase velocity spectrum

In an effort to ascertain the domain of validity of the foregoing continuum model, we
now investigate the phase velocity spectrum. For this purpose, equation (2.10), (2.20) and
(2.26b) may be reduced to the following global equation for both stresses and displacements:

[- (hi :h2f(c6a.;-a;)+(cid-c~)a;-(ci+d)a;a;+a~J<I> = 0, (2.27)

where

(p)

d == cll/PI>
(p)(p)

y == K[P/PIP2J,

2 (p)

C2 == C22 /P2'

(2.28)
(p) (p)

and P is a "mixture density" defined by P == PI +P2' The function <I> in (2.27) represents
either stress or displacement of constituent 1 or 2.

The phase velocity spectrum of (2.27) is obtained by seeking a solution of the form

<I> = <1>* ei(kx - wt) , (2.29)

where k, w, <1>* denote wave number, circular frequency, and wave amplitude, respectively.
Substitution of (2.29) into (2.27) yields the following relation between the phase velocity
cp == w/Re(K) and frequency:

where

2 d+c~±J[(ci-cD2+4cjJ
c± = .

2

(2.30a)

(2.30b)

Equation (2.30) is similar in form to the dispersion relations derived by Lempriere [6].
The basic character of(2.30) is worthy ofmention. We note that ifthe material properties

of both constituents are equal, cp = Co satisfies (2.30a), and implies the medium is non­
dispersive.

In the general case the character of the solution in four basic regions of the cp - w plane
is as follows:

(I) 0 ::; cp ::; c_ no real solution;
(II) c ::; cp ::; Co real solution, .2'w_o cp = co, .2'w_oo cp = c_;

(III) CO ::; cp ::; c + no real solution;
(IV) cp ~ c+ real solution, .2'w_oo cp = c+, .2'c

p
_oo w = Jy (cutoff frequency).

The qualitative behavior of the solution is illustrated in Fig. 2. The solution in Region II
corresponds to the primary mode of propagation while that in Region IV is a secondary
mode. The zero frequency limit ofthe primary mode, co, can be shawn to agree identically
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FIG. 2. Qualitative behavior of continuum mixture dispersion for laminates.

with the elasticity solution of Rytov [9]. This result is to be expected since the zero frequency
limit corresponds to the static elastic solution, and the continuum relations were derived
in such a way as to guarantee satisfaction of the static solution. The continuum model does,
however, diverge increasingly from the exact solution with increasing frequency, becoming
asymptotic to velocity c rather than the shear, or in some cases the Stoneley wave velocity
predicted by elasticity theory [to].

Typical quantitative behavior of the first mode is illustrated in Figs. 3(a) and (b). Here
the continuum model is compared with the exact elasticity solution derived by Rytov, and
experimental data reported by Whittier and Peck [II] for Thomel or boron reinforced
carbon phenolic laminates. Material properties for the two materials studied are given in
Tables I and 2. As can be observed, agreement between exact and approximate theories is
good for wavelengths greater than the typical composite microdimension. Fortunately,
in cases involving sufficiently long input pulses it is the low- frequency components (wave
lengths greater than the typical microdimension) which appear to dominate the overall
character of a transient solution (see [12]).

A simplified continuum theory

Under certain boundary conditions (see following section) the foregoing continuum
model can be simplified in a manner consistent with the premise that /; « 1. Consider, for
example, (2.27). If we introduce the non-dimensional variables (2.18a) then (2.27) becomes

(2.31 )

where

(2.32)
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TABLE I. THORNEL-CARBON PHENOLIC LAMINATE

Carbon phenolic
Thornel laminate laminate

Density (gjcm3
)

Shear modulus, /1 (dynjcm 2
)

Lame constant, A (dynjcm 2)

Laminate thickness, 2h, (em)
Volume fraction, n,

1·47
7·56 (lOll)
7.56 (1011)
0·0064
0·104

1-42
6.62 (10'0)

11-4(10'°)
0·0558
0·896

TABLE 2. BORON--<::ARBON PHENOLIC LAMINATE

Density (gjcm 3)
Shear modulus, /1 (dynjcm2 )

Lame constant, A(dynjcm 2 )

Laminate thickness, 2h. (em)
Volume fraction, n,

08

Boron laminate

2·37
9.51(10 11 )
8·06 (lOll)
0·0104
0·166

Carbon phenolic
laminate

1-42
6.62 (10'0)

11.4 (1010)
0·0521
0·834

_ Continuum mixture theory

- -- Exact
07 _.- Simplified theory

• Experiment [Ref. 11]

2(h, +h./I = 1 --

0·6

u -.Q)
U)

"-
E 05
u

i.<:;
0 0-40;
>
Q)

~.
J:::
a. 03

0·2

01

0

""

Frequency, cycles/Jlsec

FIG. 3. (a) Phase velocity vs. frequency for Thornel reinforced carbon phenolic laminate.



A continuum mixture theory of wave propagation in laminated and fiber reinforced composites 405

08

o 7

o 6

" 0 5.,
'"::t
E
"i 0·4
'u
a
a;
>.,

0 3'"'"~
0..

0 2

01

0

•

-- Continuum mixture theory

--- Exact

-'- Simplified theory

• Experiment [Ref. 11]
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FIG. 3. (b) Phase velocity vs. frequency for boron reinforced carbon phenolic laminate.

Let us now expand <I> in the following regular asymptotic expansion:

Substituting (2.33) into (2.32) and equating orders of 6, we obtain

(8~ - 8;)<1>0 = 0,

(2.33)

(2.34a)

(8~-8;)<I>2+[A18~+A28;8~+A38~J<I>o = O. (2.34b)

The first of (2.34) implies that nondimensional space and time derivatives may be inter­
changed when operations are on <1>0' Using this property, multiplying (2.34b) by 6

2 and
adding the product to (2.34a) results in, to 0(62) accuracy,

(2.35)

We note that a term of 0(64
) was added to (2.35) ; this, of course, does not alter the solution

of 0(62
). Thus, to 0(62

) accuracy we obtain, in dimensional form,

(2.36a)

where

(2.36b)
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Equation (2.36) is the well known Love-Rayleigh equation encountered in rod wave
propagation problems. All dispersion information is contained in the coefficient 13. We note
that when both material properties are the same, 13 ~ 2 vanishes and renders the medium
nondispersive. The cp-w dispersion relation of (2.36) is parabolic in w. A typical com­
parison of the spectra of (2.36), (2.27) and the exact elasticity solution is illustrated in Figs.
3(a), (b) for the laminates described in Tables 1 and 2.

Boundary conditions

To complete our formulation, we offer a few remarks concerning proper boundary
conditions for the continuum and the simplified continuum theories.

(ap)

For the continuum theory defined by (2.10), (2.20) and (2.26b), stresses (jxx (a = I and 2)
(aa)

or displacements Ux (a = 1 and 2) may be prescribed along the boundaries x = 0, x = L,
where x E [0, L]. The displacement condition may be replaced by a velocity condition.

The situation is not as straightforward for the simplified continuum model (2.36) and
care must be exercised when specifying boundary data. In contrast to the aforementioned
original theory, here one cannot specify stresses or displacements in each constituent at a
given boundary. It can be shown that the appropriate boundary condition for (2.36) when

(aa) (aa)

<I> == Ux is Ux = f(t) at x = 0, where a = 1 and 2. In other words, the displacement field
must be uniform with respect to y at x = 0. A similar statement applies to the boundary
x = L. The stress field, consistent with the simplifications in the continuum model, may be

(Ia) (2a)

computed from (2.20) with Ux ~ Ux ' In contrast to the displacements, the stress fields in the
two constituents may be markedly different.

(I a) (2a)

From (2.20) with Ux ~ ux ' it can be seen that specification of the area-averaged stress
(s) (Ip) (2p)

(jxx = (jxx + (jxx is mathematically equivalent to the prescription of the boundary displace-
ment. When the physical problem concerns stress boundary conditions (e.g. shock tube

(s)

loading), it has been found that (jxx as a boundary condition yields adequate results once
the wave has propagated beyond a few microdimensions from the given boundaryt. It is

(s)

evident that (jxx satisfies (2.36a).

Pulse propagation

The utility of the continuum models is perhaps best demonstrated by comparison of
theoretical pulse propagation results with experimental data. To this end the momentum
equations (2.10), interaction term (2.26b), and constitutive relations (2.20) were incorporated
into a numerical finite difference code and the results of calculations were compared with
the experimental data of Whittier and Peck [11]. Their specimens were composed of boron
or Thornel layers reinforcing a carbon phenolic matrix. Specimens of i-in. thickness were
subjected to a uniform pressure at the left boundary, with a step function time dependence
induced by a gas dynamic shock wave of about 70 psi. Rear surface velocity, averaged
across a i-in. dia. area of the specimen, was measured by means of a capacitance gage.

The calculations were begun by impacting a step function velocity of 7·786 cm/s to

t Mathematically, it can be shown that the original and simplified continuum theories yield similar results a
distance x = O(,j[l(h 1 +h2 )]) from a given boundary.
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both constituents at the boundary x = O. While this condition did not correspond precisely
to that of the experiment, which applied uniform stress at the boundary, it was felt that the
error introduced would be negligible at the rear surface of the specimens.

Figures 4 and 5 depict the comparison between experimental and theoretical results for
averaged rear surface velocity, normalized on the impact velocity Vo = 7· 786 cm/s. The
physical data on the composites is presented in Tables 1 and 2. Since absolute times were
not measured in these tests, theoretical and experimental results were matched at their
respective first peak arrivals. The times shown in the figures were those predicted by the
continuum model.

The results on the Thornel composite agree somewhat better with the experiments
than do those of the boron composite. As noted by Whittier and Peck, this may be due to
the fact that the Thornel reinforcement more nearly approximates a homogeneous layer
than does the boron. Considering the latter, as well as other differences between the
laminated medium idealization and the actual test specimen, correlation is excellent,
particularly at the head of the wave.

Finally, let us consider the more elementary theory (2.36). For a step of magnitude Vo in
velocity at the boundary x = 0 of a semi-infinite media occupying the space x > 0, the
appropriate solution of the Love-Rayleigh equation is

(2.37)

where b = col3. For Vo = 7·786 cm/s, representing the steady state value of velocity, results
obtained from (2.37) via a Gaussian quadrature routine are also compared with the original
continuum model in Figs. 4 and 5. Based upon this comparison, it would appear that the
simplified continuum theory yields adequate accuracy.

1·0

I 2

I I

::,0 10
:;;
i

0·9

'u 0·8
0

Qj 07>
"0

0·6"'"co
0'5Qi

>« 04

0'3

0·2

0 I

0

Time, )1sec

Simplified theory

Experiment

Continuum mixture

theory

FIG. 4. Comparison of continuum mixture and simplified theories with experimental rear surface
velocity results for Thornel reinforced carbon phenolic laminates.
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___ Continuum mixture theory

-'- Simplified theory

-- Experiment

Time,l'sec

FIG. 5. Comparison of continuum mixture and simplified theories with experimental rear surface
velucity results for boron reinforced carbon phenolic laminates.

3. ANALYSIS AND RESULTS FOR FIBROUS COMPOSITES

With minor modifications, the procedure outlined in previous sections can be applied
to wave propagation parallel to the fibers of a uni-directionally reinforced composite with
hexagonal array.

Formulation

We begin by approximating a hexagonal array by concentric, linearly elastic cylinders,
with perfect interface bonds and subject to vanishing shear stress and radial displacement
on the outer boundaries, as illustrated in Fig. 6. With respect to this approximation, the
relevant equations are:

(i) Equation of motion:

FIG. 6. Uni-directionally fiber-reinforced composite with hexagonal array.

(3.1 )
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(ii) Constitutive relations:

(a) (a) (a)
(Jrx = lla(axUr+ arux)'

Here (J. = 1 denotes fiber and (J. = 2 denotes matrix.
(iii) Symmetry conditions:

(2) (2)

Ur(X,r2,t) = (Jrx(x,r2,t) = 0,

(3.2a)

(3.2b)

(3.2c)

(3.3)

(iv) Interface conditions:

(I) (2)

Ur = Ur ,

(I) (2)

arr = (Jrr' (3.4)

on r = r l .

(v) Appropriate initial data at time t = °and boundary conditions on x = 0, L, where
x E [0, L].

Mixture equations of motion

If (3.1a) is multiplied by 2nr, integrated from r = °to r = r I for (J. = 1 and from r = r I

to r = r 2 for (J. = 2, and if continuity of shear stress across r = r 1 is invoked, the result can
be written in the form (2.10) where, for this case,

2n l
P == -(Jrx(x, r l , t),

r l

(Ia) 1 f.r l 1
( ) == -2 ()2nrdr,

nr l 0

(2a) 1 fr 2 2
( ) == 2 2 ( )2nrdr.

n(r2-rd rl

(3.5)

Expansions and recurrence relations

For the present problem it is convenient to expand stresses and displacements in fiber
and matrix in the form:

where

(a) (a) (a) (a) r*n
g(x,r:,t) == g(O)(x,t)+g(l)(x,t)r:+ ... g(n)(x,t)_a_+ ... ,

n!
(3.6)

(3.7)

(I) (2)

and g denotes stress or displacement in the fiber while g denotes same in the matrix.
Substitution of(3.6) into (3.1) and (3.2) yields a system of differential recurrence relations

similar to (2.13) and (2.14). Since our objective here is the derivation of a first-order theory
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only, we shall not list the complete set of such relations. Rather, the relevant equations will
be noted in the course of the analysis.

Mixture constitutive relations
(~)

If (3.2a) is averaged according to (3.5), and continuity of Ur at r = '1 is invoked, the
result is

where

(Ip) (Ia)

alGxx-blnl8xux = u:'
(2p) (2a)

a2Gxx-b2n28xux = -u:,

(3.8)

a~ == l/A~, b~ == (A~+2/l~)/A"
(3.9)

Using the first two terms in the expressions (3.6) together with a similar averaging of
(3.2b) furnishes

where

d~ = (A~ +/lJ.

(3.10)

(3.11)

(3.12)

(~a)

If Grr are subjected to a condition similar to (2. 18c), then solving for u: between equations
(3.10) and (3.11) we obtain

(3.13a)

where

(3.13b)

Finally, substituting (3.13a) into (3.8) we find the mixture constitutive equations satisfy
(2.20) with c~p redefined as

(ex # f3).
(3.14)

In contrast to the laminate analysis, the first few terms of the fiber expansion (3.6) do
not contain the static elasticity solution. Consequently, the resultant modulus c~"+cpp +
2c"p differs from the exact static composite modulus. The exact static modulus as given in
[10] may be obtained by replacing the Jn 1 in (3,13b) by unity.
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I nteraction term P

With the use of (3.6) equation (3.2c) for (l = 1 can be written

(1) (1 (I) (I»)
OrUx = iii O"rx(1)-OxUr(l) r+O(r

2
).

Ifwe multiply (3.15) by r, integrate by parts with respect to r from r

(3.15)

Otor = r l , we obtain

(3.17)

(I) (1a) d( 1 (1) (1»)
ux(x, rl, t)-ux ~ 2" iii O"xr(I)-OxUr(l) . (3.16)

(2) (2)

Similarly for (3.2d) with (l = 2, we multiply by (r2- rD/(d - d), expand Ur and 0"rx in
powers of r! = (r 2 - r) to r! = 0, and integrate by parts to obtain

(2) (2a) (J (2) (2))
ux(x,rl,t)-ux ~ 1i2 O"xr(1)-OXUr(l) Q,

where

(3.18)

(I) (2)

Since ux(x, rI' t) = ux(x, rl' t), equations (3.16) and (3.17) furnish

(3.19)

where
(1) (2)

O"~x == O"rx(x,rl,t) = O"rx(x,r2,t).

However, from (3.13a), and following the discussion concerning the laminate interaction
term, the last term in (3.19) can be shown to be of higher order than the first with respect to
the parameter e = r2/1. The interaction term, therefore, takes the form (2.26b) with
K/(h l +h2)2 replaced by K*, where

(3.20)

Phase velocity spectrum

The form of the fiber equations of motion and constitutive relations are identical to
those of the laminates. The two differ only in the geometric dependence of their constants.
Consequently, equations (2.27), (2.30) and (2.36) are applicable to the fiber geometry.

In Fig. 7, a comparison of the continuum model (first mode) dispersion relation is made
with the exact elasticity solution derived by DeRuntz [10]. The properties elected are
representative of a uni-directional fibrous quartz phenolic, the material and geometric
properties of which are given in Table 3. Once again, agreement between the continuum
and exact results is excellent for wavelengths greater than the microdimension of the
composite, and progressively poorer as frequency increases.
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FIG. 7. Phase velocity vs. frequency for quartz fiber reinforced phenolic.

Simplified theory

The simplified theory (2.36) applies to the fiber. geometry subject to the appropriate
redefinitions of constants K*, n., and c.p (a, f3 = 1,2).

Pulse propagation

In Fig. 8, typical results of transient pulse data as predicted by the continuum theory is
compared with experimental data on the uni-directional quartz phenolic fibrous composite
described previously. The experiments were performed by the Aerospace Corporation.
Specimens were subjected to a 70 psi step function in pressure via a shock tube. The
experimental apparatus was identical to that described in [11]. Rear surface velocities,
averaged across a !-in. dia. circle, were measured on a specimen 0·633 cm thick. Constit­
uent data input was as given in Table 3. The figure depicts the comparison between the
experimental and finite difference code predictions of area-averaged rear surface velocities.
We again began our calculations by imparting an equal step function velocity to both

TABLE 3. QUARTZ FIBER REINFORCED PHENOLIC

Density (gjcm 3
)

Shear modulus, J1 (dynjcm 2)

Lame constant, A (dynjcm 2 )

Fiber radius"1 (em)
Outer matrix radius", (em)
Volume fractions, n.

Quartz fiber

1·85
106 (109 )

327 (109 )

0·0508

0·272

Phenolic

1·29
30·3 (10 9

)

75·8 (10 9
)

0·0975
0·728
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FIG. 8. Comparison of continuum mixture and simplified theories with experimental rear surface velocity
results for quartz fiber reinforced phenolic.

constituents at x = O. As was pointed out previously, the condition differs from that of
uniform stress on the boundary, but is not expected to significantly influence the results at
the rear surface of the test specimens. Results for our simplified theory (2.37) are also
included in the figure for comparison,

Once again, absolute arrival times ofthe stress waves were not measured experimentally,
and theoretical and experimental results were matched at approximately their first peak
arrivals. The times shown in the figure correspond to those predicted by theory.

In this series of calculations, correlation between the simplified theory and the experi­
mental data is considerably poorer than in both laminate tests. Agreement between the
complete theory and the experiment is excellent however. A possible explanation of this
might be found in studying the dispersion results for the quartz fiber reinforced phenolic
(Fig. 7). First, the relatively large microdimensions of this composite causes the exact and
continua theories to diverge at much lower frequencies than for the two laminates investi­
gated. Further, the combination of quartz and phenolic material properties are such as to
cause the parabolic dispersion curve predicted by the simplified theory to diverge signifi­
cantly from the continuum and exact theories, at even low frequencies. A parametric study
was performed on both material and geometric constituent properties for the fiber case, and
it was found that for dimensions and material property data similar to those of the
laminates investigated (Tables 1 and 2), correlation between continuum, simplified and
exact predictions of dispersion in the fiber case could be enhanced considerably.

It should be noted that the fibers used in the quartz phenolic are actually bundles of
approximately 11,500 individual quartz filaments woven into a yarn with a phenolic
binder. Thus, as might be expected, the fibers were found to possess highly anisotropic
material properties, We have, however, modeled the fiber bundle material as isotropic
using the material properties in the longitudinal fiber direction in our calculations.

Concluding remarks

A continuum theory was constructed for wave propagation in laminated and fibrous
composites for the case of waves traveling in the direction of reinforcements. The theory is
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given in a binary mixture form by (2.10), (2.20) and (2.26). A simplified theory, valid for
certain boundary conditions, is given by (2.36). Once the dependent variables of the theory
are known (partial stresses and average displacements), the approximate microstructure
(stress and displacement distributions within each constituent) may be constructed up to
linear or quadratic dependence on the spatial coordinate transverse to the direction of
propagation.

A comparison of exact and approximate phase velocity data (see Fig. 3(a), (b) for
laminates, Fig. 7 for fibers) indicates that the theory provides good first mode agreement for
wavelengths greater than the typical composite microdimension. In addition, experimental
transient pulse data on boron--earbon phenolic and Thornel--earbon phenolic laminates,
as well as a quartz phenolic fibrous composite, correlates well with the continuum theory
results. Hence, we conclude the model is a practical one, particularly in view of its simplicity.

Finally, if additional accuracy is deemed necessary, additional terms in all expansions
may be retained. While a similar construction procedure as used here can be followed, the
resulting theory will be considerably more complex than the present one. As such, its
practical utility may be limited.
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A6cTpaKT-Pa3pa6aTbIBaeTcH TeopMH ,l:\BOHHOH CMeCH ,l:\JlH pacopOCTpaHeHHH BOJlH, HanpaBJleHHoro
THoa, B CJlOHCTHX H HeHaOpaBJleHHblX BOJlOKHHCTblX COCTaBax. B '1aCTHOCTH, ,l:\aeTCH OOCTpoeHHe
B3aHMO,l:\eHCTBHH ,l:\BYX cMeceH, H TaKJKe, KOHCTHTyTHBHble 3aBHCHMOCTH. nOJlY'lalOlllaHCH, B pe3yJlbTaTe,
TeopHH CO,l:\epJKHT B ce6e MHKpOCTpyKTypy.

Cdpe,l:\eJlHeTCH 06J1aCTb BaJKHOCTH TeopHH CMeCH, OyTeM cpaBHeHHH CoeKTpa <!>a30BoH CKOpOTCH C
Iv,HbIM H, JlHOO, HflH 3KcoepHMeHTaJlbHbiM pe3YJlbTaTOM. YKa3blBaeTcH nOJle3HOCTb MO,l:\eJlH, KaK ,l:\JlH
CflOJKHblX TaK H BOJlOKHHCTblX COCT3BOB, H3 OCHOBe KOppeJlHLIHH TeOpeTH'IeCKHX H 3KcnepHMeHTaJlbHblX
,l:\3HHbIX, KacalOlllHXCH HMOyJlbcHoro oepeXO,l:\HOrO opOLIecca BCOCTaBax THoa 60p-yrJlepO,l:\HaH <!>eHOJlbHaH
OJlaCTMaCca H TopHeJl--yrJlep0,l:\H3H <!>eHOJlbH3H OJlaCTMaCca, HJlH B O,l:\HOHaOpaBJleHHOil, BOJlOKHHCTOH,
KBapLIeBoH <!>eHOJlbHOH nJlaCTMacce.


